
fl1 r.~ Copy
Z~CRT LASSIPICATION OP THIS PAGE

REPORT DOCUMENTATION PAGE Fr~po

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED NONE

2a. SECURITY cLATIFIA FlON Al ITUDIT 3. DISTRIBUTION IAVAIIASILITY OF REPORT
_________ APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

A D -A 217 923 5)$.MONITORING ORGANIZATION REPORT NUMBER(S)

AF IT/CI/CIA- 89-006

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

AITSTUDENT AT Univ of [(if appicable.) AI/CI

11 ,DDRESS (City, Stiat, ar.d ZIP Code) 7b. ADDRESS (City, State, and ZIP' Code)

Wright-Patterson AFB 0OH 45433-6583

8a. NAME OF FUNDING I SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION [(if applicable.)

Ifc. ADDRESS (City, Star#, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT ITASK IWORK UNIT
ELEMENT NO. NO. NO 1 CCESSION NO.

11. TITLE (IncUde Security Clasiica (ion) (UNCLASSIFIED)
A Library of Mo~dular Routines for Generating Test Patterns for Diqital Circuitsq

12. PERSONAL. AUTHOR(S)
Ubanas Pumbert Belvin, Jr

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Mont, Day) 15. PAGE COUNT
7HESIS6RM N 1 FROM____To___ 1988 1 57
16. SUPPLEMENTARY NOTATION AFRVe O 4 C EES P 19-1

ERNEST A. HAYGOOD, 1st Lt, USAF
Executive Officer, Civilian Institution Programs

17. COSATI CODES 15. SUBJECT TERMS (Continue on reverse If n~ecessary and Identifyj by block number)
FIELD yGROUP SUB-GROUP

19. ABSTRACT (Continue on reverse If necessary and Identify by block number)

DTIC
ELECTE
FEB 12 1990U

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT. 03 DT:C USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Cd)2c. OFFICE SYMBOL
ERNEST A. HAYGOOD, 1st Lt, USAF (513) 255-2259 7 AFIT/Cl

D~r17,JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

AFIT/CI "OVERPRINT"

0o&

A LIBRARY OF MODULAR ROUTINES
FOR GENERATING TEST PATTERNS

FOR DIGITAL CIRCUITS

by

THOMAS HUMBERT BELVIN, JR., B.S.

(4i"' TAu

THESIS : lot _._,___,

Presented to the Faculty of the Graduate School of

The University of Texas at Austin ___,,___._,.

in Partial Fulfilment ",

of the Requirements U

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

December, 1988

Table of Contents

Table of Contents iii

1. Introduction 1

2. An Overview Of Digital Testing 3

2.1 Physical Failures and Faults 3

2.2 Types Of Digital Testing 4

2.3 Approaches To Testing 4

3. Automatic Test Pattern Generation (ATPG) 6

3.1 Test Pattern Generation (TPG) 6

3.2 Automating The TPG Process 7

3.3 The Stuck-At Fault Model 7

3.4 The Single Fault Assumption 8

3.5 Path Sensitization 8

3.6 Combinational Versus Sequential Circuits 9

4. The Three Best-Known ATPG Algorithms 10

4.1 The D-Algorithm 10

4.2 The PODEM Algorithm 11

4.3 The FAN Algorithm 14

4.4 Comparing The Three Algorithms 15

4.4.1 TPG As A Search Problem 16

iii

4.4.2 TPO Complexity......................... 16

4.4.3 The D-Algorithmn As A Search Procedure 17

4.4.4 The PODEM Algorithm As A Search Procedure . . . 18

4.4.5 The FAN Algorithm As A Search Procedure 18

S. Imp'lementation Details 10

5.1 Library Overview. 19

5.2 The UNIX Programming Environment. 19

5.3 Program Execution 21

5.4 Data Structures 22

5.5 Constructing The Internal Representation Of The Circuit . . 23

5.6 Calculating Controllabili tics And Obscrvabilitics 27

5.6.1 The Fan/Distance Method. 27

5.6.2 The CAMELOT Method 28

r%.6.3 Imnplementing The Calculations. 30

5.7 Determi~ning Unique Sensitizsation.. 30

5.8 Keeping Track Of Decisions. 31

5.9 The Backtrack Mechanism 32

5.10 Implementation Of The Modified D-Algorithmn.. 33

5.10.1 The d-alg() Function. 33

5.10.2 The xnake-pdcf() Function. 34

5.10.3 The forwardimplication() Function 34

5.10.4 The backward.implication() Function. 35

5.10.5 The d-drive() Function. 36

5.10.6 The justification() Function 37

5.10.7 The singular-cubc() Function. 37

iv

5.11 Implementation Of The PODEM Algorithm 37

5.11.1 The podem() Function 38

5.11.2 The forwardimplication() Function 38

5.11.3 The initialobjective() Function 38

5.11.4 The backtrace() Function 39

5.12 Implementation Of The FAN Algorithm 39

5.12.1 The fan() Function 39

5.12.2 The forward.implication() Function 40

5.12.3 The backward-implication 0 Function -t0

5.12.4 The final-objective() Function 40

5.12.5 The fan.backtracc(Function 40

5.12.6 The uniquc.sensitization(Function 41

5.12.7 The justification() Function 41

6. Results 42

7. Conclusions 47

BIBLIOGRAPHY 49

Vita

V

Chapter 1

Introduction

An integrated circuit (also called a chip) consists of electronic devices

and their interconnections on a monolithic piece of semiconductor material.

Invented in the late 1950's, the National Academy of Sciences heralded the

integrated circuit as the progenitor of "The Second Industrial Revolution" [1].

The digital computers and other electronic systems which have become almost

indispensable in today's society were all made possible by the integrated

circuit.

Integrated circuits can be categorized into two functional groups-

analog and digiiGl. In analog circuits, signals can vary continuously over

a specified range. In digital circuits, however, signals can assume only dis-

crete values. (Today, all digital circuits use binary logic-signals can assume

one of two possible values). Because digital circuits are capable of greater

accuracy and reliability than analog circuits, they are used extensively in

computational, data processing, communications, control and measurement

systems [2].

By putting many devices on a single chip, integration reduces the

1 tcost of fabricating integrated circuits and increases their performance and

reliability [3]. Until the mid-1970's, the number of electronic devices placed

on a single chip nearly doubled every year (Moore's Law [4]). Since then, this

rate of integration has decreased slightly.

#1

2

In today's highly competitive semiconductor market, integrated cir-

cuit manufacturers must also be concerned with product quality. Both the

manufacturer and the customer have vested interests in knowing: 1) the prob-

ability that a given device which leaves the production facility is functioning

properly, and 2) how long a typical device can be expected to function prop-

erly while in service.

To help ensure a fabricated chip is functioning properly, manufac-

turers rely on tiiting. The objectives of testing are two-fold: 1) to detect

manufacturing defects, and 2) to determine the cause of any defects detected

so that the manufacturing process can be perfected.

By shortening the interconnections between devices and reducing

the number of electrical connections which must be made between conduc-

tors, higher levels of integration have improved the reliability of integrated

circuits. As the devices on a chip become smaller and more numerous, how-

ever, they also become less accessible for testing. As a result, testing becomes

more difficult. Since more resources must be expended to solve more difficult

problems, testing also becomes more expensive.

This thesis describes the development of a library of modular com-

puter routines for the efficicnt and automatic generation of input patterns

used to test digital integrated circuits. While solving only a small part of the

testing problem, efficiently generating test patterns can lower the overall cost

associated with the testing of integrated circuits. "-

Chapter 2

An Overview Of Digital Testing

To help ensure an integrated circuit is functioning properly before

it leaves the production facility, manufacturers (and their customers) rely on

testing. The objectives of testing are two-fold: 1) to detect manufacturing

defects, and 2) to determine the cause of any defects detected so that the

manufacturing process can be perfected. (Ic 1.- c
2.1 Physical Failures and Faults

A phyjical failure is simply a physical defect. Physical failures can

occur at any time during the life of a device. When a physical failure keeps a

device from meeting its functional or performance requirements, this failure

results in a fault.

There are two basic types of faults-logical and parametric. A logical

fault transforms the function realized by a circuit into some other function [5].

A parametric fault, on the other hand, alters the magnitude of a circuit

parameter, causing a change in some factor such as switching time, current

or voltage.

3

4

2.2 Types Of Digital Testing

In order to detect faults, digital integrated circuits are subjected to

three different types of testing [5]: 1) Jtatic or DO, 2) paramdric or A C) and

3) clock-ratc.

In static testing, the device is exercised by applying binary input

patterns and analyzing the steady-state outputs to determine correct func-

tional behavior. Parametric testing is used to verify the time-related behavior

of the device, as well as voltage and current levels.

Clock-rate testing is similar to static testing, except it is performed

at frequencies near the maximum device operating rate. This form of testing is

often used to test complex devices for which parametric testing is impractical,

or to test dynamic devices with stored information which must be refrcshcd

(e.g., dynamic metal-oxide semiconductor logic).

2.3 Approaches To Testing

There are two basic approaches to testing the logical behavior of

digital integrated circuits: 1) functional, and 2) structural. Functional testing

is performed to verify that a digital system accomplishes a specified task.

The input patterns comprising these tests are derived manually by someone

familiar with the system, and without regard to the physical structure of the

circuit. Structural testing, on the other hand, is performed to ensure that

the hardware is free of faults. Structural tests are generated without regard

to the function realized by the circuit.

There are two basic types of functional testing-ezhausi:v and sam-

ple. Exhaustive functional testing of an n-input combinationai circuit involves

5

applying all 2" possible input combinations and comparing the outputs to the

expected values. Since the number of input patterns which must be applied

grows exponentially with the number of inputs, exhaustive functional testing

is feazible only for circuits with few inputs.

Sample functional testing involves applying only a relatively small

number of input patterns which exercise a device in its normal modes of

operation. Tests generated by this approach are, however, often limited in

their fault-detecting capabilities (6], and give no clue as to the cause of any

detected fault.

Structural testing involves using the structural details of th: circuit,

along with some assumptions about the consequences of physical i~urce,, to

determine the input patterns which will distinisaish between fault-free and

faulty circuits. The assumptions are used to predict the effects of physical

failures on the signals in the circuit, forming fault models. These fault models

are used in conjunction with the structural details of the circuit to develop a

list of all faults for which tests must be generated.

Due to its many advantages over functional testing, structural test-

ing has become the standard approach to developing tests for digital circuits.

These advantages include (7]: 1) a small number of tests can be generated

for those physical failures most likely to occur, 2) the effectiveness of the re-

sulting set of test patterns can be measured, 3) the cause of a fault cnt be

diagnosed, and 4) test patterns can be generated algorithmicaDly.

Chapter 3

Automatic Test Pattern Generation (ATPG)

3.1 Test Pattern Generation (TPG)

The term test pnitcrn gcncration (TPG), ot simply Iesti generation,

rciers to the process of creating the binary input paterns fr a digital circuit

which, when applied to the network, will cause fau)h(s) t,' become observable

at the output(s). Faults are observable when thw o. put(s) deviate from

expected values.

There are two main approaches to test generation: 1) probabilistic,

,.nd 2) deterrninistic. Probabilistic methods gt aterate input patterns pseudo-

randomly (i.e., without regard to circuit structure or function). Fault sim-

ulation is then used to deternine which faults, if any, are detected by these

pntterns.

Deterministic xnethods select a fault from a list of faults, and at-

tempt to generate an input pattcn which will detect that fault (i.e., make

tht fault observable). The rrzuiting input patern is called a test for ihc givcn

fault. 01ce a test 1:1s bcl ginertcd, falt simuhuAytmn is typically used to

dekt'rminc which otherer f.uit a detected by fhe smrne test. All detected

faults are thea deleted from, the h dt list, and the process is r-peatcd until

tne fault list is enxpty.

,0

7

3.2 Automating The TPG Process

An algorithm is a procedure for solving a problem in a finite number

of steps. Many deterministic test generation methods have been expressed

as algorithms, and can be executed either manually or by programming a

computer to carry out the necessary steps. Using a computer to generate the

tests is called automatic teit pattern generation (ATPG).

The three best-known ATPG algorithms are: 1) the D-algorithm [8],

2) the path-oriented decision making algorithm (PODEM) [9], and 3) the

fanout-oriented algorithm (FAN) [10]. All three use the single stuck-at fault

model and the deterministic path sensitization approach to derive tests for

combinational digital circuits described at the gate level (i.e., described by a

logic diagram).

3.3 The Stuck-At Fault Model

The oldest, simplest, and most widely used faul! model is the stuck-

at model. Under this model, the consequences of physical failures are modeled

as node signals permanently at logic 0 (stuck-atO) or logic 1 (stuck-at-i).

Experience in industry and various ".udies have shown that the

stuck-at fault model is still viable for today's techaologies [11,12]. For ex-

ample, in bipolar transistor-transistor logik. (TTL), an open connection to

the input of a gate can be modeled by a stuck-at-1 fault at that input. Shorts

between conductors in TTL technology form wired-AND functions, and many

of these physical defects can be detected by the set of tests generated for all

stuck-at faults in the network [11].

Unfortunately, fewer physical defects in devices manufactured in

8

metal-oxide semiconductor (MOS) technology can be modeled directly by

stuck-at faults. However, many of these physical defects can be detected by

a set of tests generated for all stuck-at faults in the network [121.

3.4 The Single Fault Assumption

In a manufacturing environment, a single chip may have many de-

fects. Thus it seems reasonable that multiple stuck-at faults should be con-

sidered. This greatly complicates things, however, since a circuit with n

nodes has only 2n possible single stuck-at faults (a stuck-at-0 and stuck-at-1

for each node), but has 3" - I possible multiple stuck-at faults (3" possible

combinations, one of which is a fault-free circuit).

Fortunately, however, many studies have shown that test sets which

detect a high percentage of single stuck-at faults also detect most of the

possible multiple stuck-at faults (5,13,14]. Thus the single fault assumption

is reasonable.

3.5 Path Sensitization

The path sensitization approach to test generation involves: 1) fault

ezcitation and 2) fault propagation. The goal of fault excitation is to put

the signal value opposite the fault value on the faulted line (i.e., a 1 for a

stuck-at-0 fault, and a 0 for a stuck-at-1 fault). This creates a fault signal at

the fault site which can then be propagated to a primary output. (The fault

signal values used by Roth in the D-algorithm have become accepted-a "D"

represents a 1 in the fault-free circuit and a 0 in the faulty circuit, and a 'D"

represents a 0 in the fault-free circuit and a 1 in the faulty circuit).

Fault observation involves propagating fault signal(s) to primary

9

output(s) where they can be observed. (The path created from the fault site

to the primary output where the fault is observed is called a jensitized path).

3.6 Combinational Versus Sequential Circuits

There are two basic types of digital circuits-combinational and je.

qucntial. The outputs of combinational circuits depend only on the values of

their current inputs, while the outputs of sequential circuits depend on their

past and present input values.

There are many algorithms which generate tests for combinational

circuits. Test generation for sequential circuits, however, is greatly compli-

cated by their memory elements and timing considerations. As a result, the

test generation problem for sequential circuits remains largely unsolved.

To avoid the sequential test generation problem, many manufactur-

ers have implemented their sequential circuits using various scan-path tech-

niques. By placing combinational circuits between rows of latches which are

accessible for testing, these techniques reduce the problem of test generation

for sequential circuits to (nearly) one for combinational circuits [15,16,17].

It is even possible for physical failures to transform combinational

circuits into sequential ones. For example, a short between conductors can

create a feedback path, and an open pull-up transistor in a complementary

metal-oxide semiconductor (CMOS) gate will fail to drive the output when

it should change. These sequential faults require a series of input patterns

to detect them, thus they may or may not be detected by a set of tests for

combinational stuck-at faults.

Chapter 4

The Three Best-Known ATPG Algorithms

As mentioned previously, the three best-known ATPG algorithms

are the D-algorithm (8], PODEM (9] and FAN [10]. All three of these algo-

rithms use a deterministic path sensitization approach to test generation.

4.1 The D-Algorithm

The D.algorithm was the first "complete" algorithm for test pattern

generation (i.e., given enough time, it will generate a test for a fault if a

test exists). To be "complete", a test pattern generation algorithm must be

capable of sensitizing multiple paths simultaneously.

The D-algorithm is based on the "calculus of D-cubes", where lines

in the circuit can take on any one of five possible values-0, 1, X (indetermi-

nate), D, orT.

The singular cover of a gate describes the relationship between the

inputs and the output. Each row of the singular cover is called a singular

cube. The primitive D.cubej of a gate (also known as propagation D-cubes)

describe the minimum requirements to propagate a fault signal through a

gate, and are formed by D-intersecting the cubes in the singular cover which

have different output values. The primitive D.cubes of failure (PDCFs) are

formed by D-intersecting the singular cover of the fault-free gate with the

10

11

singular cover of the faulty gate.

The D-algorithm attempts to find a test for a fault by: 1) forming

a test cube with a position for the logical value of each node in the circuit,

and initializing all values to X, 2) choosing a PDCF and intersecting the

test cube with this PDOF, 3) moving forward through the circuit toward the

primary outputs, intersecting the test cube with the propagation D-cube for

each gate encountered, and 4) when a primary output is reached, moving

backward through the circuit toward the primary inputs, justifying all nodes

left unjustified by the preceeding D-drive operation. This last step is called

the consiscncy ope ation, and is accomplished by intersecting the test cube

with the singular cubes of gates with unjustified outputs.

If none of the propagation D-cubcs for a gate are consistent with

the existing test cube entries during the D-drive operation, the D-algorithm

must backtrack to the last point where a choice existed, make an alternate

selection, md try to proceed again. Conflicts occuring during the consistency

operation are resolved in the same manner.

Backtracking may have to be performed repeatee-iy until all possible

choices have been exhausted. After all possibilities have been tried without

success, the D-algorithm determines that no test exists for the fault (i.e., that

the fault is undetectable or redundant).

4.2 The PODEM Algorithm

The PODEM algorithm allows assignments to be made only to pri-

mary inputs. The effects of these assignment are then propagated to the

internal nodes by an implication process, which is basically a logic simulation

routine. By examining all possible primary input combinations implicitly

'12

but exhaustively, the PODEM algorithm is also a "complete" test pattern

generation algorithm.

PODEM attempts to generate a test for a given fault by repeatedly:

) choosing an objective, and 2) determining the primary input assignments

necessary to achieve that objective. This process continues until a fault signal

is propagated to a primary output, or until the algorithm determines that no

test exists.

The two types of objectives in PODEM are: 1) fault ezcitation,

md 2) fault propagation. Fault excitation involves finding the primary input

assignments necessary to set the value of the faulted line to the opposite of the

fault value (i.e., a 1 for a stuck-at-0 fault, and a 0 for a stuck-at-I fault). Fault

propagation is the process of determining the input assignments necessary to

propagate a fault signal to a primary output where it can be observed.

PODEM uses a simple but effective backtracing procedure to de-

termine the input values necessary to achieve an objective. This procedure

uses relative measures of the controllabilitics of lines as inputs to a heuristic

routine which determines which path to take when alternatives exist. (The

controllability of a line denotes the relative ease with which the line can be

set to a logical value.)

When determining the input values necessary to achieve an objective

value at the output of a gate during the backtrace operation, two situations

are possible: 1) the objective can be achieved by setting any of the inputs to

a controlling state (i.e., a logic 0 for any input of an AND or NAND gate, or

a logic I for any input to an OR or NOR gate), or 2) the objective can only

be achieved by setting all of the inputs to non-controlling states (i.e., logic

1's for all inputs to AND or NAND gate, or logic 0's for all inputs to an OR

13

or NOR gate).

In the first case, PODEM sets the input which is easiest to control

(i.e., has the highest controllability) to the controlling value. This strategy

does not guarantee success, but when it is successful it saves a lot of time.

PODEM selects the input which is hardest to control as the first

input to be set to a non-controlling value in the second case. This strategy

saves time in the long run by allowing the earliest possible deterxllnation that

t objective cannot be achieved.

The backtrace operation proceeds gate by gate towards the primary

inputs until an input is finally reached. The value determined by the back-

trace routine is then assigned to the input, and the implication operation is

performed to propagate the effects to the internal nodes. If a fault signal

reaches a primary output during the implication process, a test has been gen-

erated. Otherwise, a check is made to see if the current objective has been

achieved. If it has, then a new objective is chosen. If the current objective

has not been achived, the backtrace operation is repeated.

During the fault propagation phase, PODEM selects as its next

objective to propagate a fault signal through a gate with an output which is

both: 1) closest to a primary output, and 2) from which it is still possible

to sensitize a path to a primary output. PODEM uses a simple distance

measure of observability for the first requirement, and an "X.path.check"

routine for the second. The X-path.check routine searches for a path from

the output of a gate to a primary output along which all values have not yet

been determined (i.e., along which all logic values are "X").

Each assignment made to the primary inputs, called decisions, are

stored in a last-in first-out (LIFO) stack. Associated with each decision is a

14

"retry" flag which is set when the originally assigned value is reversed during

a backtrack operation.

When a conflict is detected by 1) attempting to reassign a value

to a primary input opposite its current value, or 2) when the X.path-check

routine fails for all gates with indeterminate outputs and fault signal(s) on

their inputs (i.e., all gates on the D.fronficr), PODEM must execute, the

backtrack operation.

The PODEM backtrack operation removes decisions from the deci-

sion stack until a decision whch has not yet been retried is found. The values

of any previously retried decisions i.e., decisions with their retry flags set)

are returned to "X". The value of the first decision removed from the stack

which has not been retried, however, is reversed, its retry flag is set, and it

is added to the top of the stack. The implication routine then propagates

the effects of all decisions on the decision stack to the internal nodes, and

processing continues.

If the decision stack becomes empty during the backtrack opera-

tion (i.e., no decision is found which has not previously been retried), then

PODEM determines that no test is possible for the fault.

4.3 The FAN Algorithm

The FAN algorithm is a refinement of the PODEM algorithm, in-

cluding more effective deterministic and heuristic measures. As its name

implies, FAN pays special attention to the fanout points in a logic circuit.

Fan allows assignments to: 1) head lines, and 2) fanout stems. A

head line is a free line which feeds a bound line. A bound line is reachable from

15

some fanout point. A line which is not a bound line is a free line. Assignments

are kept in a LIFO stack just as they are in PODEM.

Like PODEM, FAN uses a backtracing procedure to satisfy objec-

tives. However, instead of backtracing along a single path, FAN backtraces

along multiple paths simultaneously. As it moves backward through the cir-

cuit towards the primary inputs, the FAN backtrace routine routine resolves

conflicting requirements at fanout points, and stops at head lines. (The back-

trace operation can be stopped at head lines since the primary input assign-

mcnts necessary to justify head line assignments can always be found without

backtracking.)

When conflicting requirements occur during the bac!ktrace operation

at fanout rtems which are not reachable from the fault site, FAN uses a

weighting scheme to determine which binary value (0 or 1) to assign to this

node. (Since binary values are assigned, these points must not be reachable

from the fault site). Resolving inconsistencies as early as possible is one of

the keys to FAN's more efficient operation.

At in PODEM, if the decision stack becomes empty during the back-

track operation, the FAN algorithm determines that no test is possible.

4.4 Comparing The Three Algorithms

In order to compare the three algorithms, it is necessary to put the

TPG problem in perspective.

16

4.4.1 TPG As A Search Problem

TPG is essentially a search procedure--a search for the primary

input assignments which will make a fault observable if it exists. Search

procedures can be categorized as blind or guided. In P blind search, the order

in which alternatives are explored is unaffected by the goal criteria or the

nature of the unexplored portion of the graph. Examples of blind searches

are depth.first and breadth.first (18).

Guided searches, on the other hand, use rules of thumb garnered

from a working knowledge of the problem domain and the nature of the goal

to help direct the search in more promising directions-heuristics. Guided

searches are usually more efficient than blind searches, but may result in the

same exhaustive enumeration in the worst case. Examples of guided searches

are hill-climbing and best-first [18).

4.4.2 TPG Complexity

The TPG process for a single stuck-at fault in a general combina-

tional network has been shown to be NP-complete [20], which puts TPG in

the same complexity category as the well-known traveling salesman and knap-

sack problems. All known algorithms for NP-complete problems require an

ezponential amount of time in the worst case. (Exponential-time algorithm

use impractically large amounts of computation time even for relatively small

Iroblem sizes).

While no one has been able to prove that NP-complete problems

can be solved in Ureasonable" amounts of time, guided search techniques are

often able to do just that.

17

4.4.3 The D-Algorithm As A Search Procedure

The D.lgorithmn is essentially a blind search, using only basic infor-

mation about the configuration of the circuit and the logical functions of the

elements to generate tests.

The D-algorithm also suffers from a large search space-all the nodes

in the circuit. Since all known algorithms for NP-complete problems like TPG

require an exponential amount of time in the worst case, the upper bound

for the time required by the D-algorithm is relatively high. To make matters

worse, this search space contains nodes which are interrelated-assigning a

value to one node often conflicts with the assignments of other nodes. Prop-

agating fault signals to primary outputs before attempting to justify assign-

ments made along the way delays the recognition of these conflicts, and often

results in wasted time and effort.

Realizing that the original D-algorithm is rather inefficient, two ma-

jor improvements were made in the version implemented for this thesis. These

modifications are conceptually the same as those made by Roth in his im-

proved version of the D-algorithm [19]: 1) forward and backward implication

operations were added to carry the uniquely implied effects of a decision

throughout the circuit immediately following the decision, and 2) the ob-

scrvabilitics of lincs in the circuit were used to decide which fault signal to

propagate next. Performing the implication operations allow conflicts to be

detected earlier, reducing the time needed to generate tests by reducing the

number of backtracks. Always propagating fault signals closest to the primary

outputs often results in generating tests in less time as well.

18

4,4.4 The PODEM Algorithm As A Search Procedure

The search space for the PODEM algorithm consists of a small sub-

aet of all the nodes i&, a circuit-the primary inputsi. This means that the

upper bound on the time required by PODEM is much less than that of the

D-algorithm. Even more important is the fact that the nodes in this search

space are independent-assigning a value to one node can never conflict with

assignments at other nodes.

PODEM is also a guided search procedure, using heuristics to de-

terminc which path to take during the backtrace operation, and which gate

to propagate a fault signal through during the fault propagation phase.

4.4.5 The FAN Algorithm As A Search Procedure

As mentioned previously, the FAN algorithm is a refinement of the

PODEM algorithm which includes more effective deterministic and heuristic

measures. The search space for PAN consists of another small subset of all

nodes in the circuit-head lines and fanout points. Thus the upper bound on

the time required by FAN is also much lower than that of the D-algorithm.

Fanout stems which are not reachable from the fault site are included in the

search space in an effort to quickly resolve conflicting requirements at thcse

points.

FAN also includes a number of deterministic measures which help to

identify conflicts at an earlier stage, thus reducing the total time and number

of backtracks required.

Chapter 5

Implementation Detai Ls

5.1 Library Overview

The functions used tu implement the D-algorithm, PODEM and

FAN were coded in the C programming language (21]. These implementations

contain about 13,000 lines of C code in over 150 functions i~i 60 different files.

The files are compiled separately, than linked together to form the programs

which implement the above algorithms.

As shown in Figure 5.1, all implementations share the same data

input routines as well as the forward implication operation. PODEM and

FAN share the same measures of controllability and observability, as well as

the X-path.check function discussed previously. D-algorthm and FAN share

the backward implication and justification operations.

5.2 The UNIX Programming Environment

All of the functions used to implement the D-algorithm, PODEM

and FAN were developed in a UNIX' operating system environment. Many

of the attributes of C and UNIX made it possible to develop the library in a

relatively short period of time, and with little prior knowledge of the language

IUNIX is a Trademark of Bell Laboratories.

19

20

iD-Alsorithm I

(Data Input) Backward
Forward Lmplication
Implication Justification

Controllability/
P__ - Observability LFNPODEM -- Values F

XPathCheck

Figure 5.1: Routines Shared By The Three Best-Known ATPG Algorithms.

or of the operating system. They include:

" The functional mcdularity of the C programming language.

" Separate compilation of multiple source files.

" The UNIX make utility.

* A powerful 0 debugger dbx.

" Two other UNIX utilities lex and yacc.

0 programs consist of one or more functicns in one or more files. If a

C program consists of two or more files, these files are compiled independently,

then connected together to form a single executable program by the linker.

Thus, by its very nature, C supports modular programming and libraries of

functions.

One UNIX utility which proved invaluable was the make utility.

Make is an automatic program compilation utility which help maintain large

programs which have been broken up into several files. When executed, make

21

i.ecks to see .f any of the files needed to create the target executable file have

been modified since the last compilation. If so, these files (and/or any files

which depend on them) are automatically recompiled and linked together to
form an up-to-date version of the program. This action saves programmers

considerable time and effort in a software development environment.

Any large software development project also requires a powerful de-

bugger like dbx. For example, since C has no automatic array bounds check-

ing, overwriting the bounds of an array can (and did) cause baffling run-time

errors which are almost impossible to diagnose in a large program without a

sophisticated debugger.

Two UNIX utilities callad lex (lexical analyzer generator) and yacc

(yet another compiler-compiler) made it very easy to input data from sep-

arate data files. These utilities free programmers from much of the coding

required to handle data entry, allowing them to concentrate their efforts on

their particular application.

5.3 Program Execution

All files are compiled and linked together to form aid executable

program called "daig". The file names "podem" and "fan" arc then linked to

the "dalg" file. When the user invokes the program with one of these names,

the first arguement on the command line determines which implementation

is executed (i.e., "dalg" for the D-algorithm, "podem" for PODEM, or "fan"

for the implementation of FAN).

The second arguement -a the command line is the name of the input

file containing the circuit description and the list of target faults. For example,

typing "dalg our.data" will execute the modified version of the D-algorithm

22

using the information in the file "our.data".

Run-time statistics (test generatien time, number of backtracks,

etc.) are. automatically appended to the file "dalg.D" (for the D-algorithm),

"podem.P" (for PODEM) or "fan.F" (for FAN) in the subdirectory "Data".

Flags in the file "globals.h" determine whether the test patterns are printed

to the screen, to a separate file, or both. When the flag indicating data is to

be written to a separate file is set, the test patterns generated are written to a

unique file in a subdirectory called "Fault.Info". If test generation for a given

fault is discontinued when a preset backtrack limit is exceeded (i.e., the fault

is "aborted") or the fault is determined to be redundant, the appropriate

message is also written to this file.

5.4 Data Structures

The implementations of D-algorithm, PODEM and FAN all share

common data structures. The internal representation of the circuit is line-

oriented and consists of collections of basic data structure elements joined by

pointer variables to form a linear linked lisL

Figure 5.2 shows a very simple circuit and its internal representation.

The information about each line is contained in two basic structures linked

by pointers: 1) the module structure, and 2) the gate.info structure. (In

Figure 5.2(b), the module structures are the large boxes across the top labeled

"module #n", and the gate-info structures are directly under the module

structures). Each module structure contains: 1) the line number, 2) the code

for the logical value of the line (0, 1, X, D or T), 3) the controllability and

observability values, 4) various flags used to speed up execution, 5) a pointer

to the associated gate-info structure, and 6) a pointer to the next module in

23

the list.

Each gate-info structure contains: 1) a code for the type of gate

the line originates from, 2) a pointer to a linked list of predecessors (i.e., the

inputs to the gate the line originates from), 3) a pointer to a linked list of

successors (i.e., either the output of the gate the line is an input to, or, if the

line is a fanout stem, the line numbers of its branches), and 4) a pointer to a

linked list of unique sensitizations used by the FAN algorithm.

It was not clear at the beginning what information needed to be

stored for efficient implementations-the data structures evolved as the de-

velopment progressed and the test circuits grew in size and complexity. The

extensive use of pointers and flags to store frequently needed information

helped increase the efficiencies of the implementations by eliminating dupli-

cation of effort. (Pointers and flags can be set once during preprocessing, or

at the start of the search for a test for a new fault, and functions needing this

information later have it immediately available).

For example, elements in the linked lists of predecessors and suc-

cessors must have pointers to the lines they reference. Supplying only the

line numbers of successors or predecessors would result in slow and repeated

searching in order to access their information. Also, many functions need to

know if a given line is a primary output, and setting a flag in the module

containing the information about the line can answer this question quickly.

5.5 Constructing The Internal Representation Of The
Circuit

During preprocessing, information from the input file is used to build

an internal representation of the circuit. A program created by the lex utility

42

I 3 _
2 LD

(a) Example Circuit.

line
module number

circuit-ptr

predecessors

sensitizations 2 11&F

*pointer to module conitaining
referenced line number

(b) Internal Representation Of (a).

Figure 5.2: An BExample Circuit And Its Internal Representation.

25

2 D7

3

(a) Example Circuit.

/* Example Circuit */

1 2 and 5; /* gates, inputs and outputs */
3 4 and 6;
5 6 or 7;
$ /* end of stction */
po 7; /* primary output list */
$

1 saO; 6 sal; /* fault list */
SS /* end of input*/

(b) Input File For (a).

Figure 5.3: Example Circuit and the Corresponding Input File.

feeds information from the input file to a yacc-created program in recognized

character sequences called tokens. The program created by the yacc utility

compares the order in which these tokens are received to predefined rules for

input file organization. When one of these rules is matched, a user-defined

action is invoked. These actions construct the linked list of data structures

which constitutes the internal representation of the circuit. Figure 5.3 shows

an example circuit and the corresponding 4nput file.

The types of gates recognized include ANDs, ORs, NANDs, NOR.,

EXCLUSIVE-ORs and INVERTERs. (The INVERTER is modeled internally

26

as a single-input NAND gate). Line numbers must be positive integers, and

the line numbers of gate outputs must be greater than any of the line numbers

of their inputs. This aids in checking the input file for errors resulting in

feedback.

After all gates and their inputs and outputs have been specified, the

primary outputs are listed. This information is needed to identify primary

outputs which are fanout branches, and also helps in checking the input file

for errors. (Every line in the input file must be a gate input, be identified as

a primary output, or both).

Following the list of prim&xy outputs is the list of target faults.

Target faults can be specified explicitly, or all possible faults can be specified

by entering the word "all". When target faults are specified explicitly, this

information is stored in a linked list.

It was decided early on not to burden the user with specifying each

and every fanout branch in the circuit. Data structures for fanout branches

are generated automatically by a special routine after the basic circuit rep-

resentation has been constructed. Unique line numbers are assigned to the

fanout branches by: 1) multiplying the line number of the stem by 100, 2)

adding an integer representing the branch number, and 3) making the result

negative. (The value 100 allows for a maximum of 99 fanout branches per

stem).

Relieving the user of the requirement to specify all fanout branches

has one drawback-specifying faults on fanout stems requires a special format

and extra data handling. Figure 5.4 shows how a fault on a fanout branch is

specified.

The routine which adds the data structures for fanout branches also

27

17

10 sao

(a) Faulted Fanout Branch.

... ; 10 sa0 17;...

(b) Fault Specification For (a).

Figure 5.4: Fault Specification For A Faulted Fanout Branch.

updates the list of primary outputs and the list of target faults after line

numbers have been assigned to the fanout lines.

5.6 Calculating Controllabilities And Observabilities

As mentioned previously, both PODEM and FAN use measures of

controllability and observability as inputs to heuristic routines which decide

which path to take when alternatives exist. Two measures of controllability

and observability were implemented (22]: 1) fan/distance and 2) CAMBLOT,

which stands for computer-aided measure for logic testing.

5.6.1 The Fan/Distance Method

Using the fan/distance method, the controllability of a line is cal-

culated by: 1) assigning each node an intrinsic controllability equal to its

28

fanout minus one, and 2) working from primary inputs to outputs, adding

the sum of the input controllabilities to the intrinsic controllability values of

gate output lines. Using this method, lines with lower controllability values

are easier to control.

The observability of each line is calculated by: 1) assigning a zero

value to primary outputs, and 2) working backwards through the circuit from

primary outputs to inputs, gate input lines are assigned observability values

equal to the output observabilities plus one. Using this method, lines with

lower observability values arc easier to observe.

5.6.2 The CAMELOT Method

The CAMELOT method calculates the controllabilities of lines by:

1) assigning the value one to primary inputs, and 2) working from the primary

inputs to the outputs, the controllabilities of gate outputs are calculated as

follows:

No = total number of possible input patterns

producing a zero at the output

N, = total number of "ossible input patterns

producing a one at the output

CTF = controllability transfer function

= I -(No- N,)/CN0 + NI)

SIC = sum of the input controllabilitics

TNI = total number of gate inputs

COO = controllability of the gate output

= CTF. (SICITNI)

29

Using the CAMELOT method, controllability values are real num-

bers between zero and one, and lines with highcr values are casier to control.

The observability of each line is calculated as follows: 1) the observ-

abilities of the primary outputs are assigned the value one, and 2) working

from the primary outputs back towards the inputs, the observabilities of gate

inputs are calculated:

NP= the total number of ways to propagate

a fault signal on this line

ND -the total number of ways to block propagation

of a fault signal on the line

OTF = observability transfer function

OGO = observability of the gate output

SCOI = sum of the controllabilities

of the other gate inputs

TNOI = total number of other inputs

00! = observability of the gate input

= OTF. OGO . (SOIITNO0)

At fanout points,

OB = observability of fanout branch "i"

OS = observability of the stem

- (1 - OB,)

The CAMELOT observability values are also real numbers between

zero and one, and lines with higher values are easier to observe.

30

The fan/distance method was implemented first, so the CAMELOT

values were made compatible by rounding their inverses to the nearest integer.

This worked well for the controllability values, but the converted observability

values began to exceed the maximum value which could be represented by

the 32-bit signed integer format of our computer. The problem was solved

by converting the six most significant bits of the format (after the sign bit)

to an exponent. This alleviated the overflow problem, and still allowed for

direct comparison of the magnitudes of observability values.

5.6.3 Implementing The Calculations

Controllabilities and observabilities are computed using thr. same

gencral method. First, the values of the primary inputs (for controllability)

or the primary outputs (for observability) are set to one, and the values

for all other lines are initialized to minus one, irdicating they have not yet

been computed. All final (non-ncgative) values are then used to calculate

the values for their successors (for controllability) or their predecessors (for

observability) during repeated passes through the internal representation of

the circuit.

Passes continue to be made through the data structures until: 1) all

values have been determined (i.e., all values arc positive), or 2) a pass through

the data structures fails to determine at least one previously undetermined

value. In the latter case, an error is reported, and processing stops.

5.7 Determining Unique Sensitizations

The unique sensitizaiions of a line are the path sensitization values

common to all possible paths from the line to a primary output. As with the

31

calculations of line observabilities, the unique sensitizations of all lines are

determined by the unique sensitizations of their successors during repeated

passes through the internal representation of the circuit.

On the first pass through the data structures, the pointers to the

linked lists of unique sensitizations are set to NULL (i.e., zero or none) for

the primary outputs, and to a predetermined value which signifies they have

not yet been determined for all other lines. (The address of the module d.ta

structure itself was used).

The unique sensitizations of a line are determined once the unique

sensitizations of its successor(s) have been found. If the line is not a fanout

stein, then it has only one successor. Its unique sensitizations can be deter-

mined using: 1) the type of gate the line is an input to, 2) the line numbers

of the other inputs to that same gate, and 3) the unique sensitizations of its

successor (i.e., the unique sensitizations of the gate output line).

If, on the other hand, the line is a fanout stem, then its unique sen-

sitizations are the sensitizations common to the sets of unique sensitizations

of its fanout branches.

As with the controllability and observability calculations, passes

continue to be made through the data structures until: 1) all unique sen-

sitizations have been determined, or 2) a pass through the data structures

fails to determine the unique sensitizations for at least one new line. Again,

in the latter case, an error is reported and processing stops.

5.8 Keeping Track Of Decisions

All three algorithms use a LIFO stack to keep track of decisions and

ensure all possible choices are examined, either explicitly or implicitly. When

32

a new decision is made, it is pushed onto the top of the stack.

Along with the decision itself, the implemented version of the D-

algorithm (which includes forward and backward implication operations) also

saves: 1) the PDCF (for the first decision) or the propagation D-cube (for

subsequent decisions) selected, 2) the backward implicationst and 3) the re-

sulting D-frontier. This information is used to restore the state of the circtit

when a backtrack occurs.

If the implications of a new decision do not conflict with previous

decisions and their effects, the FAN algorithm saves this decision and: 1) its

backward implications, 2) any unique sensitization values used, and 3) the

backward implications of any unique sensitizations used.

Both the D-lgorithm and FAN also have a second decision stack

for the justification operation. Along with the singular cubes selected, the

effects of backward implications must again be stored. (Using forward and

backward implication in the justification operation also reduces the amount

of time required to generate a test).

The PODEM algorithm is the only one of the three which saves only

the decisions on its decision stack.

5.9 The Backtrack Mechanism

When a conflict occurs in any of the three algorithms, they must

backtrack to the last decision which involved making a choice and try another

alternative. In order to accomplish this action, the circuit must be returned

to the state which existed when the choice was made. The D-algorithm and

FAN save the state of the circuit, while PODEM is able to propagate the

effects of the previous decisions to restore the state.

33

The section which describes how decisions are recorded also dt-

scribes5 what infornation is saved by the D-algorithm and FAN in order to

restore the circuit state.

5.10 Implementation Of The Modified D-Algorithm

As mentioned previously1 two improvements to the original D-algorithin

were incorporated into the version implemented: 1) forward and backward

implication operations following each decision , and 2) the observabilitics of

lines were used to decide which fault signal to propagate next.

The implementation of the D-algorithm includes the following major

functions:

* d-algO

* make-pdcf0

forwardimplication()

* backward-implication 0

* d.drivc)

* justification()

a singular.cube(

5.10.1 The d.alg0 Function

The dalg0 function orchestrates the operations of the other func-

tions. It also handles the decision stack and backtrack operations discussed

previously.

34

5.10.2 The make.pdcx() Function

The make.pdcf(function generate, linked list of all primary D-

cubes of failure (PDCFs) using: 1) the type of gate, 2) the number of gate

inputs, and 3) the type of fault (stuck-at-0 or stuck-at-i) at the output of the

gate. Each list element contains the coded values for the input(s) and output

corresponding to a single PDCF. (Each output is either D or 15).

5.10.3 The forward-implication 0 Function

The forward.implication(function, used by all three algorithms,

transmits the logical effects of changing values through the circuit in the

forward direction (i.e., towards the primary outputs). Effects are propagated

when the output value of a gate can be determined by its input values.

When a decision is made, the value of the decision node is changed,

and the decision is examined for any forward implications. The successor(s)

of the decision node are automatically added to the beginning of a circular

buffer of lines to be evaluated. The forward implications are determined

by successively: 1) removiug a line from the buffer, 2) determining its new

value from the values of its predecessors, and 3) comparing this new value to

the current value. If the current value is X, the new value is assigned, and

the successor(s) of the line are added to the end of the buffer. If the new

value is the same as the old value, no further action is taken, and processing

continues w.th the next line in the buffer. (If the current output was anything

but X, and the new value is not the same as the old value, a conflict occurs.)

Evaluations continue to be carried out until: 1) the buffer becomes empty, or

2) a conflict occurs.

A circular buffer is used instead of a linked list to avoid the overhead

35

associated with linked list operations:

" Creating new list elements (dynamic memory allocation)

* Adding and deleting elements from a list

" Returning unused elements (i.e., memory) to the system

The size of the buffer mty be varied, and may well become a compromise

betwecn the desired speed of execution and the size of the available memory.

A linked list is used to handle any overflow from the buffer. As space becomes

available in the buffer, information in the overflow list is moved into the buffer.

If a conflict occurs, the forwardimplication) function is called a

second time to restore the state of the circuit to its condition before the

last decision was made. This is accomplished by changing the decision node

back to X, and propagating the effects until lines tagged as having values

determined by previous decisions are encountered.

Each time a fault signal is propagated, the linked list containing the

lines in the D-frontier is updated. This list is also updated each time a value

which allowed the propagation of a fault signal is changed back to X following

a conflict.

5.10.4 The backward-implication() Function

The backwardimplication(function, also used by the FAN algo-

rithm, transmits uniquely implied logic values backward through the circuit

towards the primary inputs. Values are uniquely implied when there is only

one set of input values which results in the present output value.

Each time a decision is made, it is examined for backward impli-

cations before the forward-implication(function is performed. (PODEM

36

makes assignments only to primary inputs, thus there can be no backward

implications.) If & predecessor value is uniquely implied, its value is changed,

and this change is recorded in one of two linked lists. If the predecessor is

not a fanout node, the change is recorded in the "backward impact" list. If

the predecessor node is a fanout node, the change is recorded in a linked

list of "forward impacts." (Backward implication is always performed before

forward implication, and the calling -outine must also send those lines in the

"forward impact" list to the forward implication routine.)

These lists) containing the results of the backward implication pro-

cess, arc used later to restore the state of the circuit during a backtrack. (See

the section describing the backtrack operation).

5.10.5 The d.drivc() Function

The d-drive() function automatically generates the propagation D-

cubes for all gate types except EXGLUSIVE-OR gates by assigning the binary

values (0 or 1) to input lines which have not yet not yet been determined

(i.e., are still X) in order to propagate fault signals toward primary out-

puts. The advance.by.X 0 function generates the propagation D-cubes for

EXCLUSIVE-OR gates.

The d-drive() function continues to propagate fault signals toward

primary outputs until: 1) a fault signal arrives at an output, or 2) all possible

ways to propagate fault signals have been tried without success. In the latter

case, the D-algorithm determines that no test exists for the fault.

37

5.1C The justification 0 Function

Tie justificationO function, also used by the FAN algorithm, uses

information supplied by the singular-cube() function to find non-conflicting

assignments which justify all unjustified lines. Processing takes place in a

doubly linked list originally containing a list of all unjustified lines. This ist

is expanded to include the line numbers of all predecessors of thes- unjustified

lines as well.

After a singular cube is selected and the values of affected lines

are changed, the forward and backward implications of these assignments

are examined. If conflicts occur, new singular cubes are chosen, and their

implications are propagated forward and backward through the circuit. This

process continues until: 1) all lines are justified, or 2) all possible combinations

of singular cubes have been tried without success. In the latter case, the

assignments resulting from the justification() routine are reversed, and the

calling routine is informed of the failure.

5.10.7 The singularcube() Function

The singular.cube() function generates the singular cubes for all

gates on an as needed basis. To determine the next singular cube to be

generated and returned, it needs to know: 1) the gate type, 2) the number of

inputs, and 3) the number assigned to the last singular cube generated.

5.11 Implementation Of The PODEM Algorithm

The implementation of the PODEM algorithm includes the following

major functions:

38

* podem(

* forward-implication(

* initia-objective()

* backtrace()

5.11.1 The podern(Function

The podem(function orchestrates the operations of the other func-

tions. It also handles the decision stack and backtrack operations discussed

previously.

5.11.2 The forwardirnplication 0 Function

The forward-implication 0 function, shared by all three implemen-

tations, is discussed in the prcceeding cection on the modified D-algorithm.

5.11.3 The initial-objective() Function

The initial. objective() function is used to generate a fault signal at

a fault site and to propagate fault signals to primary outputs. A fault signal

is established by achieving the objective of setting the value of the faulted

line to the opposite of the fault value (i.e., a 0 for a line with a stuck-at-1

fault, and a 1 for a line with a stuck-at-0 fault). This objective is passed to

the backtrace routine.

When propagating fault signals toward the primary outputs, the

objective becomes propagating a fault signal through the gate on the D-

frontier with an output that has both: 1) the highest observability, and 2) an

X-path to a primary output. This objective is also passed to the backtrace

39

routine.

5.11.4 The backtrace(Function

Tlie backtrace 0 routine uses the heuristics discussed previously to

move backward through the circuit in an effort to determine a primary input

assignment which will achieve the initial objective.

5.12 Implementation Of The FAN Algorithm

The implementation of the FAN algorithm includes the following

major functions:

* fan()

* forwardimplication()

* backward.implication 0

9 final-objective()

9 fanbacktrace(

* unique..sensitization()

e justificationo

5.12.1 The fan() Function

The fan() function orchestrates the operations of the other func-

tions. It also handles the decision stack and backtrack operations discussed

previously.

40

5.12.2 The forward-impllcation 0 Function

The forward.implication(function, common to all three implemen-

tations, is discussed in the preceeding section on the modified D-algorithm.

5.12.3 The backwardimplication(Function

The backward.implication() operation is shared by the implementa-

tions of the D-algorithm and PAN, and is discussed in the preceeding section

on the modified D-algorithm.

5.12.4 The final.objective() Function

The final-objective() function: 1) assigns the appropriate binary

value to the head line or fanout point objective returned by the detfinal-obj 0

routine, and 2) returns a pointer to the module data structure containing

the information about the objective line to the calling fan() function. The

det.final-obj() operation uses the status of the backtrace flag and the sets of

head line and fanout point objectives, formed by the fan.backtrace() function,

to determine the final objective.

5.12.5 The fan-backtrace() Function

The fan-backtrace() function moves backward through the circuit

along multiple paths in . breadth-first manner from the initial objective

lines towards the primary inputs, resolving conflicting requirements at fanout

points which are not reachable from the fault site, and stopping at head lines.

(Not being reachable from the fault site guarantees that a binary value can

be assigned to the fanout stem).

41

To implement the multiple backtrace in a breadth-first manner, ob-

jctives are removed from the head of a linked list of current objectives, and,

if they are not head lines or fanout branches, heuristic rules [101 are used to

determine the next objectives. These next objectives are then added to the

tail of the list of current objectives, but only if a search of the list verifies

they are not already included.

5.12.6 The unique-sensitization 0 Function

The unique.sensitization() function is executed when there is only a

single gate in the D-frontier which has an X.path to a primary .iutput.

The required assignments, determined during preprocessing, are made

in an cffort to reduce the time needed to generate a test. (See the earlier sec-

tion on how these unique sensitizations are determined).

5.12.7 The justiflcation() Function

After a fault signal has been propagated to a primary output, the

justification() function is used to justify the assignments at head lines and

fanout points. The justification() function, shared by the D-algorithm and

FAN, is discussed in the earlier section on the modified D-algorithm.

Chapter 6

Results

All three implementations were used to generate tests for a standard

set of circuits known as the "ISCAS circuits" [23). The characteristics of these

circuits [24] are shown in Table 6.1.

Table 6.2 shows the fault coverage, the average number of back-

tracks, and the total time required to generate complete sets of tests for

nine of the ISCAS circuits using the implemented version of the D-algorithm.

Tables 6.3 and 6.4 show the same information for the PODEM and FAN im-

plementations respectively. All results were obtained with a backtrack limit

of 10 and without fault simulation during test generation to find any other

faults detected by a test for a particular fault. Fault simulation was used

later, however, to verify that the tests produced did indeed detect the faults

for which they were generated.

The fault coverages shown are the fault coverages for collapsed sets

of all faults. Collapsing was performed using equivalence relationships only,

and typically resulted in sets of target faults half the size of the original sets

of all possible stuck-at faults. The numbers in parentheses beside the fault

coverage figures are the percentages of faults in the collapsed sets which were

determined to be redundant. The fault coverage figures do not include these

redundant faults.

42

43

Table 6.1: Characteristics Of The ISCAS Circuits

Circuit Total Total Input Output Average
Name Lincs Gates Lines Lines Fanout
c432 432 160 36 7 2.65
c499 499 202 41 32 4.34
c880 880 383 60 26 3.50

c1355 1355 546 41 32 2.97
c1908 1908 880 33 25 2.58
c2670 2670 1193 233 140 2.74
c3540 3540 1669 50 22 3.15
c5315 5315 2307 178 123 3.51
c6288 6288 2406 32 32 2.64
c7552 7552 3512 207 108 2.95

Table 6.2: Results For Implementation Of D-Algorithm

Average
ISCAS Fault Back- Time
Circuit Coverage tracks (sec.)

c432 98.3(0.2) 0.438 39
c499 94.5(1.1) 0.937 85
c880 100 0.048 42.3

c1355 40.4(0.5) 7.604 434
c1908 93.3(0.4) 0.872 561
c2670 88.3(3.0) 1.446 432
c3540 89.8(3.7) 1.222 1055
c5315 94.8(1.1) 0.802 910
c7552 81.9(0.7) 2.540 2892

44

Table 6.3: Results For Implementation Of PODEM

Average
ISCAS Fault Back- Time
Circuit Coverage tracks (sec.)

c432 98.5(0) 1.418 28
c499 95.8(0) 1.241 85
c880 100 0.007 33

c1355 91.4(0) 1.135 399
c1908 98.9(0.3) 0.123 261
c2670 91.7(0.9) 1.092 365
c3540 89.6(1.0) 1.306 1160
c5315 96.8(0.8) 0.513 873
c7552 89.8(0.7) 1.682 3574

Table 6.4: Results For Implementation Of FAN

Average
ISCAS Fault Back- Time
Circuit Coverage tracks (sec.)

c432 98.7(0.2) 0.447 171
c499 79.2(1.1) 3.074 284
C880 100 0.781 133

c1355 49.3(0.5) 7.187 797
c1908 88.5(0.4) 2.122 1778
c2670 89.3(3.5) 1.285 1306
c3540 87.2(3.7) 1.806 3446
c5315 97.5(1.1) 0.712 2069
c7552 86.3(0.8) 2.936 9659

45

The average number of backtracks is calculated by dividing the total

number of backtracks by the number of faults in the collapsed set.

The time recorded in the tables is the time actually spent in the

test generation routines, and does not include the time required for prcpro-

cessing (i.e., the time required to build the data structures, calculate the

controllabilities and observabilities, etc.).

With a backtrack limit of 10, the results show that the PODEM im-

plementation often outperformed the other two implementations in all three

categories. What the results do not show is the effect re.dundant faults have

on these measurements when the backtrack lirit is raised in an effort to im-

prove fault coverage. The PAN and D-algorithm implementations frequently

determine that faults are redundant in fewer backtracks than the PODEM

implementation, suggesting that their relative performances may improve for

large circuits when the backtrack limit is high.

The same statistics for a previous implementation of PODEML [25]

considered reasonably efficient is shown in Table 6.5. Comparing this data

with the results in Table 6.3 suggests that the new implementation is at least

as efficient as the previous one. The greatest differences occur in the aver-

age number of backtracks, and are most likely due to the different guidance

heuristics used.

Software profiling, used to gather run-time statistics on the program

functions, also yielded some interesting results. The implemented version of

the D-algorithm typically spends most of its time in the forward implication,

backward implication and justification operations. The PODEM implemen-

tation typically spends most of its time in the forward implication, back-

trace and the main control operations. The implementation of FAN typically

46

Table 6.5: Results For Previous Implementation Of PODEM

Average
ISCAS Fault Back- Time
Circuit Coverage tracks (sec.)

c432 93.3(0) 0.971 30
c499 97.6(0) 0.325 83
c1355 96.8(0) 0.881 703
C1908 99.1(0.3) 0.141 304
c2670 95.6(0.9) 0.471 427
c3540 90.2(1.0) 1.120 1205
c5315 98.2(0.8) 0.196 1161
c7552 97.1(0.7) 0.429 3365

spends the bulk of its time in the forward implication, multiple backtrace and

various linked list operations.

Chapter 7

Conclusions

A library of modular computer routines for ATPG was developed

and used to implement the three best-known ATPG algorithms-the (modi-

fied) D-algorithm, PODEM and FAN. These implementations efficiently gen-

erate tests for digital circuits, and can be used to reduce the escalating costs

associated with the testing of digital integrated circuits.

In addition, this library approach facilitates the implementation of

new ATPG algorithms, and also provides a favorable environment in which

the relative performances of ATPG algorithms can be compared. New ATPG

algorithms can be implemented by combining the existing routines in new

and different ways, adding new routines, substituting new routines for ex-

isting ones, etc. Hybrid test generation programs which switch from one

implementation to another during execution can also be developed and opti-

mized.

In the library environment, the sharing of common functions tends

to nullify any differences in performance due to implementation, thereby ac-

centuating differences in the efficiencies of the underlying algorithms. For

example, all three of the algorithms implemented spend most of their time

in the forward implication routine. Thus their relative performances could

be greatly affected by the efficiencies of their forward implication operations.

By sharing a common forward implication routine, however, any differences

47

48

in their :elative performances are more likely to result from differences in the

efficiencies of ti- basic algorithms.

The hybrid test generation program approach warrants further study.

For example, if the fault coverage provided by the PODEM implementation

with a low backtrack limit is not sufficient, it may be bette: to attack the

aborted faults with the FAN or modified D-aigorithm implementation rather

than simply trying again with a higbck bcki rac. limit. Through further ex-

perimentation and analysis, the best overall strategy for combining the three

implementations to form one test generation program can be determined.

The main drawback to the library approach is that it is restrictive-

the data structures are predetermined and cannot be optimized for any single

implementation. Any small impact on the performance of a single implcmen-

tation is, however, greatly outweighed by the advantages of this approach,

especially in the case of a hybrid test generation program.

In closing, it is hard to imagine an environment more conducive to

the development of a library of modular routines for ATPG than the one

provided by the C programming language and the UNIX operating system.

Because C is terse and deals with the same types of objects that computers

do (e.g., characters, numbers and addresses), compilers can easily be devel-

oped whid produce efficient machine language programs. The UNIX utilities

enhance programmer productivity by providing the basic functions needed in

a software development environment.

BIBLIOGRAPHY

[1] T. Reid, The Chip, Simon and Schuster, New York, 1984.

(2] C. Roth, Fundamentals Of Logic Design, West Publishing Company, St.

Paul, Mhinesota, 1979.

[3] F. Tsui, LSI/VLSI Testability Design, McGraw-Hill, New York, 1987.

[4] G. Moore, "VLSI-Some Fundamental Challenges," IEEE Spectrum,

April 1979, pp. 30-37.

[5] M. Breuer and A. Friedman, Diagnosis & Reliable Design Of Digital

Systems, Computer Science Press, Rockville, Maryland, 1976.

(6] A. Susskind, "Diagnostics For Logic Networks," IEEB Spectrum, Octo-

ber 1973, pp. 40-47.

[7) A. Miczo, Digillal Logic Testing And Simulation, John Wiley & Sons,

New York, 1986.

[8] J. Roth, "Diagnosis Of Automata Failures: A Calculus And A Method,"

IBM Journal of Research and Development, July 1966, pp 278-291.

[9] P. God, "An Implicit Enumeration Algorithm To Generate Tests

For Combinational Logic Circuits," IEEE Transactions on Computers,

March 1981, pp. 215-222.

[10] H. Fujiwara and T. Shimono, "On The Acceleration Of Test Generation

Algorithms," IEEE Transactions on Computers, December 1983, pp.

1137-1144.

49

50

[11] K. Mei, "Bridging And Stuck-At Faults," IEEE Transactions on Com-

puters, July 1974, pp. 720-727.

[12] T. Williams (Editor), VLSI Testing, North-Holland, Amsterdam, The

Netherlands, 1986.

[13] 3. Hughes and E. McCluskey, "Multiple Stuck-At Fault Coverage Of

Single Stuck-At Fault Test Sets," Proceedings of the International Test

Conference, 1986, pp. 368-373.

[14] J. Hayes, "Fault Modeling," IEEE Design and Test of Computers, April

1985, pp. 88-95.

[15] M. Williams and 3. Angell, "Enhancing Testability Of Large-Scale Inte-

grated Circuits Via Test Points And Additional Logic," IEEE Transac-

tions on Computers, January 1973, pp. 46-60.

(16] E. Eichclberger and T. Williams, "A Logic Design Structure For LSI

Testability," Proceedings of the Design Automation Conference, 1977,

pp. 462-468.

[17] T. Williams and K. Parker, "Design For Testability-A Survey," Pro-

cecdings of the IEEE, January 1983, pp. 98-112.

[18] P. Winston, Artificial Intelligence, Addison-Wesley, Reading, Mas-

sachusetts, 1984.

[19] 3. Roth, W. Bouricius and P. Schneider, "Programmed Algorithms To

Compute Tests To Detect And Distinguish Between Failures In Logic

Circuits," IEEE Transactions on Computers, October 1967: pp. 567-580.

[20] 0. Ibarra and S. Sahni, "Polynomially Complete Fault Detection Prob-

lems," IEEE Transactions on Computers, 1975, pp. 242-249.

I-.

5'1

121] B. Kernighan and D. Ritchie, The C Programming Language, Prentice-

Hall, Englewood Cliffs, New Jersey, 1978.

[22] R. Bennetts, Design Of Testable Logic Circuits, Addison-Wesley, Read-

ing, Massachusetts, 1984.

[23) Special Session, "Recent Algorithms For Gate-Level ATPG With Fault

Simulation And Their Perfomiance Assessment," Proceedings of the In-

ternaiional Symposium on Circuits and Systems, June 1985.

(24) F. Brglez, P. Pownall and R. Hum, "Accelerated ATPG And Fault Grad-

ing Via Testability Analysis," Proceedings of the International Sympo.

sium on Circuits and Systems, June 1885, pp. 695-698.

(25] H. Min, personal communication, November 1988.

VITA

Thomas Humbert Belvin, Jr., was born in on

the son of an

After graduating from Buchholz High School in Gainesville, Florida, in 1974,

he entered Florida Technological University in Orlando, Florida. In 1976, he

joined the United States Air Force, and returned to college at The University

of Texas at Austin in 1978. After being awarded the degree of Bachelor of

Science in Electrical Engineering from The University of Texas in December,

1980, he received a commission in the United States Air Force. During the

following years he served as an electrical engineer in the Air Force, achieving

the rank of captain. In August, 1987, he entered The Graduate School of The

University of Texas.

Permanent address:

This thesis was typeset' with IXI) X by the author.

1iLTEX document preparation system was developed by Leslie Lamport as a special version
of Donald Knuth's T7X program for computer typesetting. TEX is a trademark of the
American Mathematical Society. The II'TX macro package for The University of Texas at

Austin thesis format was written by Khe-Sing The.

